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This paper discusses the role of quantitative reasoning in developing an understanding of the 

Erath’s energy budget, a key concept in climate science, as a system formed by multiple 

interrelated energy flows between the sun, the surface, and the atmosphere. The paper illustrates 

these claims by comparing the quantitative reasoning of two preservice mathematics teachers 

(PSTs). First, the PSTs must understand the quantities (parts) involved in the energy budget: 

concentration, irradiance, and their units of measure. Second, they must make sense of the 

interrelationships between those quantities in the context of the energy budget. It is concluded 

that a sophisticated quantitative understanding of the energy budget as a system can support the 

understanding of climate change. 

 

Introduction 

Human activities (e.g., electricity generation, transportation, or food production) release large 

amounts of greenhouse gases into the atmosphere, which trap heat and enhance the average 

temperature of the planet. The Intergovernmental Panel on Climate Change (IPCC) has warmed 

us against exceeding a global warming of 1.5 ºC above the preindustrial era average, otherwise 

we will witness devastating and irreversible consequences to our social, economic, and natural 

systems. We have, at most, 30 years before passing that threshold (IPCC, 2018), and staying 

within that safe limit requires everyone’s commitment to support and adopt mitigation strategies, 

which is more likely when people possess knowledge about climate change (Sewell et al., 2017). 

Unfortunately, climate change is not a phenomenon easy to understand; its planetary scale 

makes it difficult for a single person to experience all of its consequences, and its complexity 

requires the person to deal with concepts from systems dynamics such as conceiving multiple 

interrelated variables (interconnectedness), identifying causality loops between variables 

(feedback), and examining patterns of variation over time (dynamic relationships) (Ghosh, 2017; 

Roychoudhury et al., 2017; Schuler et al., 2018). 

Mathematics and mathematics education can play a prominent role in helping students and 

teachers grasp those concepts, thus promoting climate change education (Barwell, 2013a, 2013b; 

González, 2021; Renert, 2011). A promising approach involves examining, from a quantitative 

perspective, a key concept in the study and modeling of climate change: The Earth’s energy 

budget (Lambert & Bleicher, 2013). This paper offers a theoretical discussion about the role of 

quantitative reasoning in developing an understanding of the energy budget as a system formed 

by multiple interrelated energy flows (quantities) between the sun, the surface, and the 

atmosphere. The discussion uses examples from my previous research on how preservice 

mathematics teachers (PSTs) make sense of the mathematics involved in modeling climate 

change (González, 2017). 

 

The Earth’s Energy Budget 

The Earth’s energy budget accounts for the direction and magnitude of all energy flows that 

exist between the sun, the planet’s surface, and the atmosphere (Figure 1). First, the sun radiates 

energy and heat towards the Earth at an approximately constant rate; most of it passes through 
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the atmosphere warming the planet’s surface (S). As the surface heats up, it radiates infrared 

energy upward, to the atmosphere (R). A small fraction of it escapes to space (L), but the 

majority (B) is absorbed by greenhouse gases (GHG) warming the atmosphere. As the 

atmosphere heats up, it radiates a fraction of the absorbed energy in both directions: out to space 

and back to the surface (A’s). The latter further increases the temperature of the surface and 

represents the magnitude of the greenhouse effect. This energy exchange occurs continuously 

and dynamically between the sun, the surface, and the atmosphere, and regulates the planet’s 

average temperature. 

The energy flows S, R, L, B, A (Figure 1) can change in magnitude due to different factors 

known as climate forcings. A particularly interesting forcing in modeling climate change 

involves determining changes in the energy flows due to changes in the abundance of GHG. The 

energy flows are quantified in terms of irradiance —the energy incident to a surface per unit 

time per unit area—, which is measured in Joules per second per square meter (Js−1m−2) and the 

abundance of GHG in the atmosphere is quantified in terms of concentration — the relative 

abundance of a gas in the air (mixture of gases) with respect to the air volume—, which is 

measured in parts per million (ppm) or parts per billion (ppb). 

 
Figure 1. Diagram of the Earth’s energy budget. 

Theoretical Framework 

Current global issues such as sustainability, pollution, climate change, and poverty require 

systems thinking, or the ability to: (i) visualize the interconnections and relationships between 

the parts in the system; (ii) examine behavior that changes over time; and (iii) examine how 

systems-level phenomena emerge from interactions between the system’s parts (Orgill, York, & 

MacKellar, 2019). From a mathematical perspective, understanding those issues systemically 

involves the construction of quantities associated with the system components and the definition 

of relationships between the quantities to connect such components. This is when systems 

thinking intersects with quantitative reasoning since it represents the set of “mental actions of a 

student who conceives of a mathematical situation, constructs quantities in that situation, and 

then relates, manipulates, and uses those quantities to make a problem situation coherent” 

(Weber, Ellis, Kulow, & Ozgur, 2014, p. 24). 

The theory of quantitative reasoning (Thompson, 2011) is based on the argument that 

students construct a quantity through an effortful cognitive process known as quantification. This 

process involves identifying measurable attributes of objects and anticipating ways of measuring 

them. For instance, the quantity concentration of CO2
1 is involved in situations where several 

 
1 Carbon dioxide (CO2) is a main driver of global warming (IPCC, 2018). 



gases are mixed together (object). In this mixture, some gases are more abundant than others 

since they represent a larger fraction of the mixture (measurable attribute). Determining the 

fraction that correspond to CO2 is a way of measuring the relative abundance of that gas and 

such fraction can be measure in units such as parts per million (ppm). According to Thompson, 

the meaning a student construct for a quantity is inseparable from the quantification process. 

In the context of this paper, understanding the energy budget thus requires developing 

meaning for the quantities representing the abundance of GHG in the atmosphere and the 

intensity of the energy flows between the sun, the surface, and the atmosphere. It also requires 

determining the relationships that exit between those quantities that make the energy budget 

work as a whole. 

 

Context of the Study 

This paper came from a larger study that investigated how preservice mathematics teachers 

(PSTs) understand the mathematics behind simple mathematical models for climate change 

(González, 2017). The larger study had three phases and included six mathematical tasks. Phase 

1 was an examination of the PSTs’ conceptions of quantities that commonly appear in 

mathematical description of climate change: gas concentration, in parts per million (ppm), and 

irradiance, in Joules per second per square meter (J s─1m─2). Phase 2 investigated the ways PSTs 

reasoned covariationally while making sense of the link between carbon dioxide (CO2) pollution 

and global warming. Phase 3 assessed the PSTs’ ability to understand more sophisticated models 

of climate change. Three female PSTs (hereafter Kris, Pam, and Jodi) enrolled in a mathematics 

education program at a large public university in the Southeast of the United States participated 

during the larger study. These PSTs have completed two calculus courses, an introduction to 

higher mathematics course, and a mathematics content course for secondary teachers. The PSTs 

completed each task during an individual, task-based interview (Goldin, 2000) that lasted about 

60 minutes. The interviews were video recorded and transcribed for the analysis. 

In what follows, I contrast the quantitative reasoning of Kris and Pam in relation to their 

work on the first three tasks. These two PSTs were selected because their quantitative reasoning 

showed interesting differences, and this paper focuses on the first three tasks because those 

examined the quantities associated with the energy budget’s components and relationships 

between such quantities representing processes in the energy budget. 

 

Results 

Before PSTs could understand the energy budget’s components, it was necessary to examine 

their conceptions of the quantities associated with such components: concentration and 

irradiance. It was important to explore their conceptions because they may have an impact on 

their understanding of the different components of the energy budget to which these quantities 

are associated. In particular, the PSTs should construct concentration as a measure of abundance 

of a gas in a mixture and irradiance as a measure of intensity of radiation over a surface. 

The Diving Tank Task 2 (Table 1) required PSTs to compare the air2 of two diving tanks 

(objects) in relation to their content of CO2. Both, Kris and Pam, made use of concentration in 

ppm, which they conceptualized as a volume of CO2 per 1,000,000 cm3 of air (measurable 

attribute), hence 1 ppm represented 1 cm3 of CO2 per every 1,000,000 cm3 of air. For example, 

Pam described a concentration of 362 ppm as follows: “when I look at that [points at 362 ppm], I 

think automatically [writes ‘362/1,000,000’]”. Kris interpreted the same value as follows: “The 

 
2 Air is a mixture of several gases, one of which is carbon dioxide (CO2). 



ppm of tank A is 362, and that represents the volume of a gas, which is just CO2, contained in 

1,000,000 cm3 of air”. 

Table 1. The tasks involving concentration, in ppm, and irradiance, in Js−1m−2 

Diving Tank Task 2 Radiation Task 2 

The volume concentration of gas X, denoted as Qx, in an air 

mixture is the ratio: 

𝑄𝑥 =
volume of gas X

volume of air
 

Diving tanks also contain a small volume of carbon dioxide 

(CO2). The table below shows the volumes of air and CO2 of 

two diving tanks. 

Tank Air (cm3) CO2 (cm3) 

A 4,000,000 1,448 

B 800,000 316 

a) Calculate each tank’s volume concentration of CO2. 

Interpret your result in the context of this situation. 

b) When concentrations are small, they are often measured 

in ppm (parts per million), or the number of parts 

corresponding to a particular gas in 1,000,000 parts of 

air. Calculate each tank’s ppm concentration of CO2. 

When the energy density of a metallic sheet of daridium 

increases by 2,500 J/m2, the sheet’s temperature rises by 4 C. 

In an experiment, two sheets were positioned at the same 

distance from two devices that produce radiation (see Figure). 

 

Device A radiates 750 J/s (Joules per second) toward sheet A 

and device B radiates 1,200 J/s toward sheet B. If both sheets 

were at room temperature (around 15 °C) at the beginning of 

the experiment and both devices started radiating energy at 

the same time, then which sheet will first reach a temperature 

of 25 °C? 

 

The Radiation Task 2 (Table 1) required PSTs to compare the intensity of radiation received 

by two very thin metallic sheets (objects). They, after some assistance, made use of irradiance to 

do the comparison, but they demonstrated different conceptions of that quantity. Kris, for 

instance, conceptualized irradiance as an amount by which the energy per m2 increases per 

second (measurable attribute), hence 1 Js−1m−2 represented 1 (Jm−2) increase in energy per m2 per 

every second. She explained the situation as follows. 
for every second device A is running, 750 … Joules of radiation get put into sheet A. … so we 

divided 750 by 6, which is the area of sheet A, … we got 125 Joules per meter square [sic.] increase 

in energy density per second that device A is running. 
Kris also identified a second measurable attribute for irradiance: how fast the sheet’s temperature 

increases (“As long as we know the increase of energy density per second, then we can tell 

immediately … which [sheet] is going to reach [25 °C] faster”). In contrast, Pam conceptualized 

irradiance as an association between an amount of energy and 1 m2 and 1 s (measurable 

attribute), hence 1 Js−1m−2 represented 1 J of energy per every (m2 s) (“It’s like every second, 

how many Joules are to one meter [sic.]. So, after one second it’s been [draws a rectangle 

formed by six squares and writes ‘125’ inside each square]”). Pam, unlike Kris, did not see a 

relationship between irradiance and temperature, explaining that irradiance was insufficient 

information to determine how fast each sheet’s temperature was rising (“I think this [circles 125 

Js─1m─2] doesn’t help you [complete the task] unless you know how big [the sheet] is or you 

know the rate”). 

Then, the PSTs worked with the previous quantities and defined relationships between them 

in the context of the energy budget (Figure 1). González (2017) asked Kris and Pam to define the 



planetary energy imbalance, N, a quantity that indicates the magnitude of an energy imbalance in 

the energy budget. Kris conceptualized N as a difference between the total energy inflow and the 

total energy outflow at the surface level, N = (S + A) – R, so that it expresses the net change in 

surface energy and surface temperature (measurable attributes). For instance, Kris interpreted N 

> 0 as follows: “temperature is increasing because as we gain energy, as we say at the beginning, 

the temperature increases”. Similarly, Kris interpreted N < 0 as follows: “temperature is 

decreasing when N is less than zero [writes ‘T↓ when N < 0’], because this [places hand over the 

diagram of the energy budget] is losing energy”. Pam also conceptualized N as a difference, but 

hers was a difference between the total amount of energy absorbed and the total amount of 

energy released by the surface. She explicitly referred to the energy flows as “amounts of 

energy” and even compared N to an amount of water, stating that N can never be negative (“So, 

if I put in a cup of water [points at S and A], you can’t take a cup and a half out [points at R], and 

then have a negative amount of water [points at the surface]”). This suggested that Pam 

conceptualized N as the actual surface energy (measurable attribute). Claiming that S + A < R 

was impossible has a couple of implications. First, Pam seemed to think that the initial surface 

energy was zero. Second, and related to the first implication, Pam seemed to think that N = 0 is 

equivalent to having zero surface energy. It follows that the case S + A < R is impossible because 

the surface cannot contain a negative amount of energy. 

Next, Kris and Pam examined other relationships while working on the Forcing by CO2 task 

(González, 2017), which examines how the energy flows change when the atmospheric CO2 

concentration, C, changes (Figure 2). If C were to increase, then so would the atmosphere’s 

capacity to absorb energy. Thus, the atmospheric energy flows B and A would increase, while the 

energy flow L would decrease. This causes an energy imbalance or forcing by CO2 with 

magnitude F = (S + A) − R3. By examining the diagram of the energy budget (Figure 1), Kris 

conceptualized the dependence of B, A, and L on C as well as the independence of S and R on C. 

She also conceptualized the relationship between B and A, and between F and S, R, and A. 
If you increase the concentration of CO2, B is going to increase because there are more CO2 

molecules to absorb the energy, so less it is going to be leaked [points at L] … OK, so S stays the 

same [pauses]. Wait, hold on [writes ‘A = B/2’]. If B increases, then A is going to increase, and S and 

R stay the same [pauses]. So, [F] is going to be positive. 
Pam needed additional assistance from the researcher and access to particular values to establish 

the aforementioned relationships. First, I gave her the values S = 240, R = 390, L = 90, B = 300, 

and A = 150, all in J s−1m─2, in order to illustrate a balance of energy (radiative equilibrium) 

since F = (240 + 150) – 390 = 0. Then, I changed the value B = 300 to B = 340 in order to 

simulate the effects of increasing C, and she and I discussed that effect over the energy flows.  
I: Let’s imagine we increase the concentration of CO2 by a certain amount. This results in B 

growing from 300 to 340. So, this flow changed [point at B], this flow changed [point at L], and 

these two changed [point at both A’s] … [S] is still 240 because we are just making changes in 

the atmosphere, and S does not depend on the atmosphere’s composition. So, S is 240 and R 

remains at 390 as well 

P: Except B [writes “F = (S + A) – R”] … So, B is 340; that means A is now 170. So, we have 240 

plus 170 minus 390 [writes “F = (240 + 170) − 390 = 20”] 

I: This value [point at 20] is a change the energy budget caused by a change in the concentration of 

CO2. That is a forcing by CO2, that is the value of F 

P: Ah! So, when the CO2 increases, F increases 

 
3 In the Forcing by CO2 task, the forcing, F, represents the initial magnitude of N caused only by an instantaneous 

pulse of CO2 to the atmosphere at t = 0. Thus, it is possible to use F = (S + A) – R to find the value of the forcing. 



The discussion appeared to have helped Pam understand the relationship between B, A, on C, and 

the relationship between F and S, R, and A, which she synthesized into the relationship F = f(C). 

 
Figure 2. The forcing by CO2 task 

Defining the relationships between the different quantities involved in the energy budget 

allowed the PSTs to understand the overall the effect of the increase in C over the surface 

temperature. For instance, Pam interpreted her graph of F = f(C) as follows. 
When the forcing by CO2 is positive, so that means there is more [energy] going in than coming out. 

Because your concentration is bigger, your B is bigger and your L is smaller. Because, as we go up 

[with her index finger, follows her graph’s shape], the B gets bigger, and bigger, and bigger, and the 

L gets smaller, and smaller, and smaller … So, there is more [energy] going into the Earth, so it is 

hotter, the temperature of the Earth is hotter. 

The excerpt illustrates that the PSTs could develop an understanding of the energy budget as a 

system that responds in a particular way (with an increase in surface energy and surface 

temperature) when the atmospheric CO2 concentration increases. That is a key realization to 

understand the link between CO2 pollution and global warming (Lambert & Bleicher, 2013). 

 

Discussion 

Quantitative reasoning mediated Kris and Pam’s ability to understand the energy budget as a 

system by representing its components and processes through quantities and relationships 

between them. Kris conceptualized the energy flows between the sun, the surface, and the 

atmosphere as rates measuring how fast the temperature of each component increases. She then 

defined the energy imbalance, N, with a difference between rates so that it indicates the net 

change in surface energy and surface temperature. Pam conceptualized the energy flows as total 

amounts of energy transferred between two components of the energy budget. Thus, when she 

defined N with a difference between energy flows, she understood N as the actual magnitude of 

surface energy. Kris’s conceptualization of the energy flows appeared to support the realization 

that changes in the energy budget produce changes in surface temperature. Pam’s 

conceptualization, in contrast, did not support such realization, which may represent an obstacle 

to understand the role of the energy budget in regulating the Earth’s surface temperature. 

Kris and Pam’s conception of concentration measured in ppm appeared sufficient to conceive 

the quantity atmospheric CO2 concentration, C, and visualize changes in its magnitude. Then, the 

PSTs defined relationships between that quantity C and the energy flows to construct the 

quantity forcing by CO2 as a function of C, or F = f(C). Defining that relationship supported the 



PSTs’ ability to: (i) understand how the energy budget, as a system, responds to an increase in 

atmospheric CO2, and (ii) connect changes in CO2 concentration with changes in surface 

temperature. These two realizations are key to link CO2 pollution to global warming and thus 

develop an understanding of climate change as a human driven phenomenon. These results 

indicate that mathematics education can play an important role in developing awareness about 

climate change, addressing skepticism, and promoting support for mitigation policies. 
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