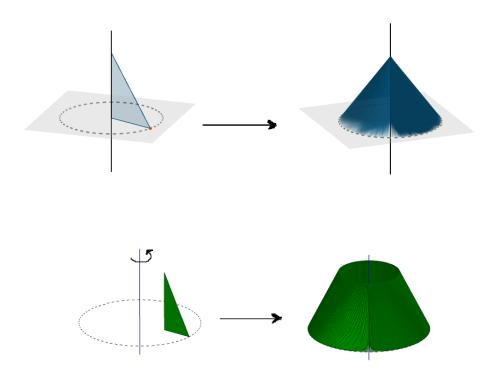


Apuntes Unidad 3

Cuerpos geométricos obtenidos por rotación de figuras planas


Curso: Geometría 3D

Unidad 3: Generación de cuerpos utilizando patrones geométricos **Tema:** Cuerpos geométricos obtenidos por rotación y traslación

Contenido: Cuerpos geométricos obtenidos por rotación de figuras planas

SÓLIDO DE REVOLUCIÓN

Se denomina **sólido de revolución** a aquel que se obtiene al girar una figura plana en torno a una recta, llamada eje de rotación. Esta recta puede pasar por la figura o ser exterior a ella.

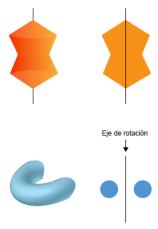
Dependiendo del eje de rotación, una misma figura plana puede dar lugar a diferentes cuerpos geométricos. Por ejemplo, trabajando con el triángulo hemos obtenido cuerpos tales como:

Por otro lado, al rotar el rectángulo usando diferentes ejes, obtuvimos cuerpos tales como los siguientes:

Curso: Geometría 3D

Unidad 3: Generación de cuerpos utilizando patrones geométricos **Tema:** Cuerpos geométricos obtenidos por rotación y traslación

Contenido: Cuerpos geométricos obtenidos por rotación de figuras planas


SÓLIDO DE REVOLUCIÓN CORTADO POR PLANOS

Al ser generados por la rotación de una figura plana, los sólidos de revolución tienen ciertas características cuando son cortados por distintos planos:

 Al cortarlo con cualquier plano perpendicular al eje de rotación, se pueden obtener círculos o anillos concéntricos. En casos extremos se pueden obtener puntos y circunferencias.

• Al cortarlo con planos que contienen al eje de rotación, se obtiene siempre la misma figura, en la cual se observa simetría axial.

Curso: Geometría 3D

Unidad 3: Generación de cuerpos utilizando patrones geométricos **Tema:** Cuerpos geométricos obtenidos por rotación y traslación

Contenido: Cuerpos geométricos obtenidos por rotación de figuras planas

SÍNTESIS

- Cuando cortamos piezas que se generan con tornos con un plano perpendicular a su eje, las secciones que podemos observar son círculos o un conjunto de anillos concéntricos.
- Por otro lado, si cortamos la pieza longitudinalmente, es decir, con un plano que **contiene**, a su eje, podemos observar que se obtienen figuras simétricas con respecto al eje.
- Se denomina sólido de revolución a aquel que se obtiene al girar una figura plana en torno a una recta, llamada eje de rotación. Esta recta puede pasar por la figura o ser exterior a ella.
- Un mismo sólido de revolución se puede obtener a partir de la rotación de diferentes figuras planas. Es decir, **no hay** una única figura plana que permita obtener un cuerpo por revolución.
- Al cortarlo un sólido de revolución con cualquier plano perpendicular al eje de rotación, se pueden obtener círculos o anillos concéntricos.
- Al cortarlo con planos que contienen al eje de rotación, se obtiene siempre la misma figura, en la cual se observa simetría axial.