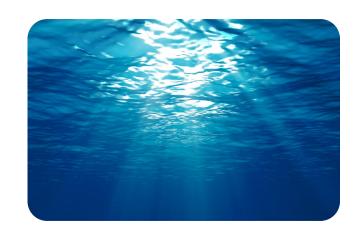


Expediciones oceanográficas

Video: Tara Ocean



Video: Tara Ocean

- ¿Cuál es la importancia de los océanos?
- ¿Qué hace la Fundación Tara Ocean?
- ¿Por qué es importante estudiar el plancton?

Presentación del problema

Consideremos las siguientes variables de estudio:

- Temperatura
- Oxígeno
- Archaea, Bacteria y Eukaryota

1. ¿Cómo se calcula la correlación lineal entre dos variables?

1. ¿Cómo se calcula la correlación lineal entre dos variables?

$$r = \frac{\sum (x_i - \overline{x}) (y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2} \sqrt{\sum (y_i - \overline{y})^2}}$$

MAT CON MATEMÁTICA CONECTADA

1. ¿Cómo se calcula la correlación lineal entre dos variables?

	Α	В	C	D	Е	F	G
1		Variables medioambientales			Variables de la biodiversidad		ersidad
2	TSC_NAME	Temperatura (ºC)	Oxigeno (umol/kg)		Archaea	Bacteria	Eukaryota
3	TSC008	21.486650	208.245000		3495	82885	389
4	TSC013	17.211742	221.782083		378	56248	671
5	TSC016	18.319192	217.809833		65	94449	2229
6	TSC020	20.442500	207.613550		19	64655	677
7	TSC021	25.028100	189.916750		2514	66980	2224
8	TSC025	25.811708	188.341917		1739	46277	3607
9	TSC027	27.309700	183.589125		2676	39583	1012
10	TSC031	27.635025	183.846250		3776	37249	1428
11	TSC036	25.681369	209.807083		1102	39292	393
12	TSC045	26.313595	187.739500		2717	37630	761
13	TSC056	29.151544	187.306625		2036	59132	1673
14	TSC060	30.127850	188.795750		2220	60361	862
15	TSC062	30.593450	186.021500		1266	70289	1183
16	TSC065	29.818108	187.350000		1726	84291	882
17	TSC068	27.956483	191.628083		2338	62617	756

= COEF.DE.CORREL(B3:B17;D3:D17)

2. a) ¿Qué significan los coeficientes de correlación encontrados?

2. a) ¿Qué significan los coeficientes de correlación encontrados?

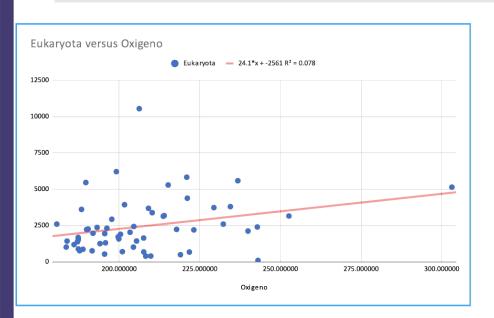
	Archaea	Bacteria	Eukaryota
Temperatura	-0,16	0,12	-0,33
Oxígeno	0,03	-0,13	0,28

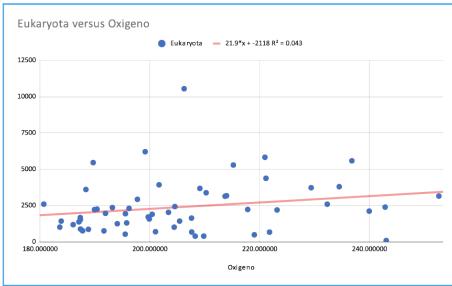
2. b) ¿Qué pares de variables están correlacionadas?

2. b) ¿Qué pares de variables están correlacionadas?

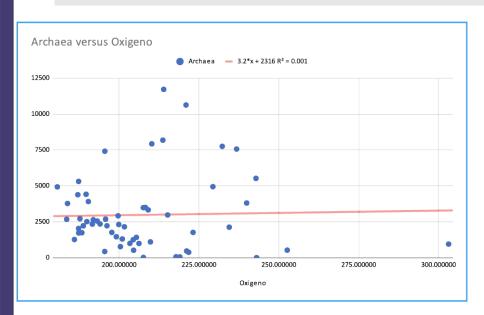
	Archaea	Bacteria	Eukaryota
Temperatura	-0,16	0,12	-0,33
Oxígeno	0,03	-0,13	0,28

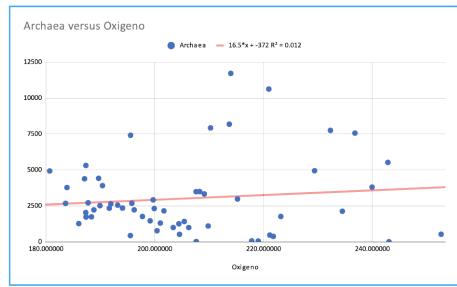
2. c) ¿Por qué crees que las concentraciones de Bacteria aumentan?

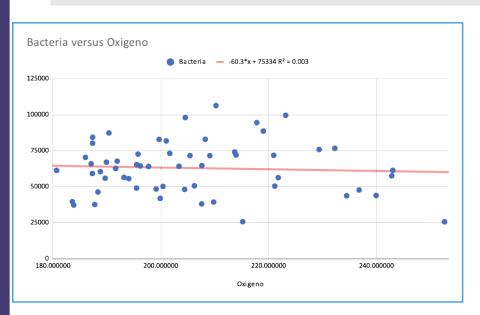


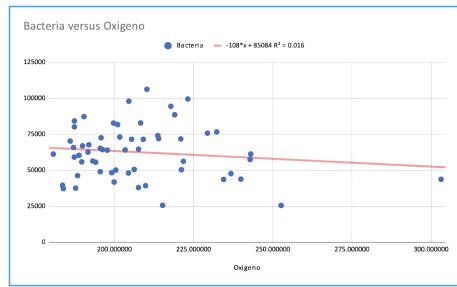

2. c) ¿Por qué crees que las concentraciones de Bacteria aumentan?

- En aguas frías, como las regiones polares, hay una menor diversidad bacteriana en comparación con las aguas cálidas de los trópicos.
- Las bacterias tienen una gran capacidad de adaptación a las condiciones ambientales como la temperatura.





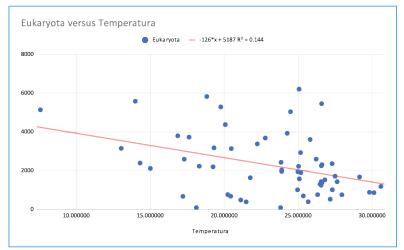




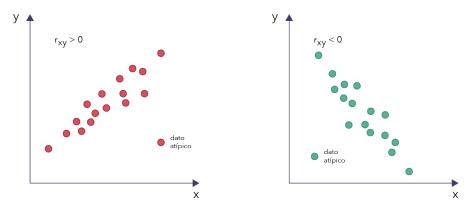
3. b) ¿A qué crees que se deben los datos atípicos?

3. b) ¿A qué crees que se deben los datos atípicos?

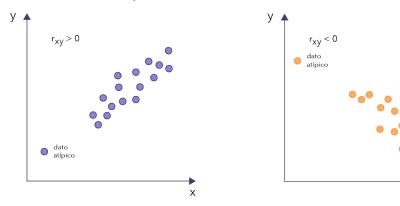
- Errores de procedimiento: errores en la toma o registro de los datos.
- Variabilidad de los datos: datos correctos que por alguna razón tienen un valor muy alejado del resto.



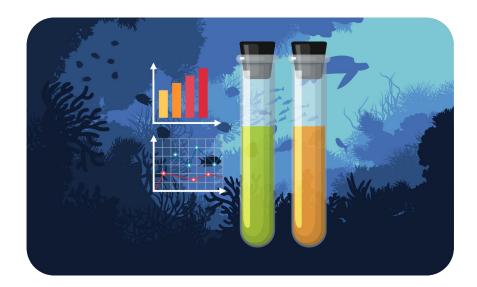
 El uso de softwares es útil para el cálculo del coeficiente de correlación, pues permiten automatizar los cálculos para evitar errores manuales y proporcionan resultados precisos de manera rápida.



 En las variables analizadas, las que presentan mayor correlación lineal es la Temperatura con el microorganismo Eukaryota. Además se observa que la correlación aumenta cuando se quitan los datos atípicos.



- Los datos atípicos pueden afectar el análisis y la interpretación del valor del coeficiente de correlación lineal:
 - Si el dato atípico se aleja de la tendencia lineal, es usual que la magnitud del coeficiente de correlación aumente, ya que la correlación lineal es más fuerte.



- Los datos atípicos pueden afectar el análisis y la interpretación del valor del coeficiente de correlación lineal:
 - Si el dato atípico forma parte de la tendencia lineal, es difícil estimar si el coeficiente de correlación aumenta o disminuye al remover el dato atípico.

• Es importante evaluar los datos en su contexto. Los datos en estadística son **números en contexto**, no valores sueltos. A veces hay mediciones imprecisas u otros factores que afectan los resultados.

Expediciones oceanográficas

