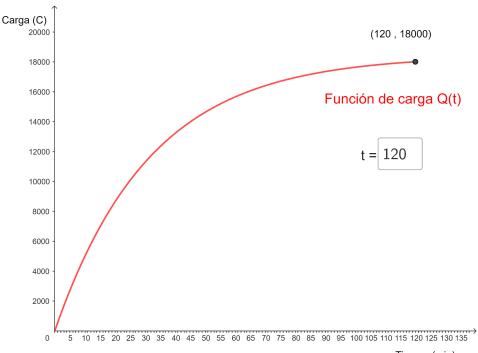


Hoja de Actividades

Baterías


Contexto

Analizaremos el caso de la función de carga Q(t) de una batería de celular de uso común, que denominaremos batería Celular, que tiene las siguientes características:

- La batería tiene una capacidad máxima (carga nominal), medida en Coulomb \mathcal{C} , de 18.000 \mathcal{C} .
- Su tiempo de carga nominal es de 120 minutos. Es decir, si la batería está totalmente descargada, demora ese tiempo en llegar a su capacidad nominal.
- La función Q(t) de la batería Celular sigue los porcentajes de carga para las fracciones del tiempo de carga total T = 120 minutos:

Tiempo	Porcentaje de carga
$\frac{1}{4}T$	63,2%
$\frac{1}{2}T$	86,5%
$-\frac{3}{4}T$	95%
T	100%

• El gráfico de Q(t) es:

Actividad 1

Utiliza el recurso GeoGebra (https://www.geogebra.org/m/bqwm3mkx) para responder las siguientes preguntas:

1. Completa la tabla, aproximando tu respuesta a valores enteros.

Nivel de carga (en C)	Tiempo de carga (en minutos)
0	0
	10
	20
	30
	45
	60
	90
18.000	120

2. Verifica que los porcentajes de carga de esta batería a los 30, 60 y 90 minutos, coinciden con los porcentajes de carga de una batería genérica descritos en el video. Recuerda que el tiempo de carga nominal de la batería Celular es de T=120 minutos.

Batería genérica		Batería Celular	
Tiempo	Porcentaje de carga Tiempo		Porcentaje de carga
$\frac{1}{4}T$	63,2%	T/4 = 30 min	$\frac{11269}{18000}$ • 100% \approx 62,61%
$\frac{1}{2}T$	86,5%	T/2 = 60 min	
$\frac{3}{4}T$	95%	3T/4 = 90 min	
T	100%	T = 120 min	100%

- 3. Usando los valores de la tabla del ítem 1, calcula la velocidad media de la carga de la batería Celular entre los 20 y 30 minutos.
- 4. Usando el recurso, calcula la velocidad media de la carga de la batería Celular entre los 30 y 45 minutos.

Actividad 2

Utiliza el recurso de GeoGebra (https://www.geogebra.org/m/nmd7tsdm) para responder las siguientes preguntas.

1. Completa las siguientes tablas:

$t_2^{}$	$t_{_I}$	Δt	Velocidad media $\left[rac{C}{\min} ight]$ (Pendiente recta secante) $rac{\Delta Q}{\Delta t}$
30	20	10	265,14
30	29	1	229,11
30	29,9		
30	29,99		
30	29,999		

t_2	$t_{_I}$	Δt	Velocidad media $\left[rac{C}{ ext{min}} ight]$ (Pendiente recta secante) $rac{\Delta Q}{\Delta t}$
30	40	-10	193,41
30	31	-1	222
30	30,1		
30	30,01		
30	30,001		

2. Al observar ambas tablas, ¿qué sucede con la pendiente de la recta secante cuando Δt tiende a 0?

Actividad 3

El recurso de GeoGebra que está en https://www.geogebra.org/m/kuhjcsnf entrega la pendiente de la recta tangente al gráfico de la función de carga Q(t) en el punto $(t_0, Q(t_0))$.

Utiliza el recurso para responder las siguientes preguntas:

- 1. Determina el valor de las siguientes derivadas:
 - a) Q'(15)
 - b) Q'(45)
 - c) Q'(60)
 - d) Q'(90)
- 2. ¿A qué velocidad $\left[\frac{C}{min}\right]$ está cargándose la batería en los siguientes instantes?
 - a) A los 15 min.
 - b) A los 45 min.
 - c) A los 60 min.
 - d) A los 90 min.
- 3. ¿Cuántas veces más rápido, aproximadamente, se carga la batería a los 15 min que a los 90 min?